Crystal Structure of ErCd_{3} and Its Isomorphous Compounds

By M.L. Fornasini and F. Merlo
Istituto di Chimica Fisica, Università di Genora, Genova, Italy

(Received 16 May 1972)

Abstract

The crystal structure of ErCd_{3} has been solved using photographic data. The compound is orthorhombic, $a=7.094, b=10.678, c=4.804 \AA$, space group $\mathrm{Cmcm}, Z=4$. The packing arrangement is closely related to that of GdCd_{3}, with the hexagonal $\mathrm{Ni}_{3} \mathrm{Sn}$ structure type. All the MCd_{3} compounds with $\mathrm{M}=\mathrm{Tb}, \mathrm{Dy}$, $\mathrm{Ho}, \mathrm{Tm}, \mathrm{Lu}$ and Y are isotypic with ErCd_{3}.

During a study on the alloying behaviour of the rareearth metals with cadmium (Bruzzone, Fornasini \& Merlo, 1972), Tb, Dy, Ho, Er, Tm, Lu and Y were found to form isomorphous MCd_{3} phases. The purpose of the present work was the determination of their crystal structure.

The preparation of the compounds is described by Bruzzone et al. (1972). Several, single needle-shaped crystals of ErCd_{3} were examined with X-rays by Laue, rotating, Weissenberg and precession methods, using Cu or $\mathrm{Mo} K \alpha$ radiation. The intensity data were obtained from a well formed prismatic crystal, measuring $0.2 \times 0.02 \times 0.02 \mathrm{~mm}$. Integrated precession photographs, taken with filtered Mo radiation, provided 217 independent reflexions of which 129 observed reflexions were measured by a microdensitometer and 88 unobserved were assumed to have a value equal to half the least observable intensity. Lorentz and polarization corrections were applied, but as the crystal was approximately cylindrical and $\mu r \simeq 0.5$ for Mo radiation, no absorption correction was made.

All crystals showed orthorhombic symmetry and the lattice constants, subsequently refined from powder data, are:

$$
a=7.094, \quad b=10.678, \quad c=4.804 \AA .
$$

The conditions for possible reflexions are: $h k l$ present with $h+k=2 n$, and $h 0 l$ present with $l=2 n$, indicating the three possible space groups $C m c 2_{1}, C 2 c m$ and Cmem.

A pycnometric determination of the density gave a value $d_{\mathrm{exp}}=9.1 \mathrm{~g} . \mathrm{cm}^{-3}$ which agrees with the calculated value $d_{\text {calc }}=9.21 \mathrm{g.cm}{ }^{-3}$, based on four unit formulae per cell.

The comparison of the powder photographs of ErCd_{3} with those of the hexagonal $\mathrm{GdCd}{ }_{3}$ phase $\left(\mathrm{Ni}_{3} \mathrm{Sn}\right.$ structure type, $a=6.621, c=4.933 \AA ;$ Bruzzone, Fornasini \& Merlo, 1971), shows a certain resemblance. The cell constants of ErCd_{3} are related to $\mathrm{Ni}_{3} \mathrm{Sn}$-like GdCd_{3} as follows: $a \simeq a_{\text {hex }}, b \simeq a_{\text {hex }} / 3$ and $c \simeq c_{\text {hex }}$. Moreover, it was noticed that the intensities of the spots $h k l$ were equal to those of $h_{1}, l l+2$, apart from the Lp factor and normal decline, suggesting that the atoms in the cell lie on two planes perpendicular to [001] at a distance of $c / 2$. A trial structure in the Cmcm
space group, based on a simple orthorhombic distortion of the $\mathrm{Ni}_{3} \mathrm{Sn}$ type, gave a reasonable agreement between calculated and observed intensities. A modified version of the program ORFLS (Busing, Martin \& Levy, 1962), was used for the full-matrix least-squares refinement. The function minimized was $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|K F_{c}\right|\right)^{2}$. In this calculation, amplitudes of 129 reflexions that were actually observed were given unit weight; those of reflexions too weak to be observed were given zero weight. The atomic scattering factors were corrected for the anomalous scattering with the values given in International Tables for X-ray Crystallography (1962). Eleven parameters were refined - four positional coordinates, six scale factors and an overall temperature factor. After a few cycles including all observed reflexions, an R value of 0.067 was obtained, where $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$. At this stage it was observed that some strong reflexions, namely 002,004 , 006,221 and 040 , showed an observed structure factor lower than the calculated one. A secondary extinction correction was then applied, using the formula $\left|F_{\text {correct }}\right|=\left|F_{o}\right|\left(1+g I_{c}\right)$ where I_{c} is the calculated intensity and g is a parameter to be determined empirically. Refinement proceeded assuming isotropic temperature factors for each atom as variables and gave a final R value of 0.060 . For all reflexions the R value becomes $0 \cdot 105$. After the last cycle the shifts in the coordinates were nearly one per cent of their estimated standard deviations. In Table 1 are listed crystallographic data and parameters of ErCd_{3} with the corresponding standard deviations. Table 2 collects the final observed and calculated structure factors. No attempt was made to refine further by using anisotropic temperature factors as variables, nor was refinement attempted using the space groups $C m c 2_{1}$ and $C 2 \mathrm{~cm}$.

Table 1. Crystallographic data for ErCd_{3}
The estimated standard deviations from the least-squares refinements are given in parentheses in units of the last significant figure of the parameter value.

$$
\text { Space group: } \mathrm{Cmcm} \text { (No 63) }
$$ $a=7 \cdot 094, b=10 \cdot 678, c=4 \cdot 804 \AA$ $d_{\mathrm{exp}}=9 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3} ; d_{\mathrm{c}: \mathrm{LL}}=9 \cdot 21 \mathrm{~g} . \mathrm{cm}^{-3}$.

	Position	x	y	z	$B\left(\AA^{2}\right)$
	4 Er	$4(c)$	0	$0.3679(4)$	$\frac{1}{4}$
$4.40(8)$					
$4 \mathrm{Cd}(1)$	$4(c)$	0	$0.8249(8)$	$\frac{1}{4}$	$0.75(13)$
$8 \mathrm{Cd}(2)$	$8(g)$	$0.2129(6)$	$0.0950(5)$	$\frac{1}{4}$	$0.71(10)$

Table 2. Observed and calculated structure factors of ErCd_{3}

An asterisk indicates reflexions which were too weak to be measured.

The crystal-structure determination was carried out also for the isomorphous compound YCd_{3}. Intensity data were collected from a crystal measuring $0.13 \times$ $0.03 \times 0.04 \mathrm{~mm}$ using the same procedure as for ErCd_{3}. A least-squares refinement was made with only $53 \mathrm{ob}-$ served reflexions, starting with the positional parameters of ErCd_{3}, single isotropic B factors and one scale factor. An R value of 0.066 was obtained at the end of the last cycle. In Table 3 are shown crystallographic data for YCd_{3}.

Table 3. Crystallographic data for YCd_{3}

	$\begin{gathered} \text { Space group: Cmcm (No. 63) } \\ a=7.044, b=10.864, c=4.837 \AA \\ d_{\text {exp }}=7.6 \mathrm{~g} . \mathrm{cm}^{-3} ; d_{\text {calc }}=7.64 \mathrm{~g} . \mathrm{cm}^{-3} . \end{gathered}$				
	Position	x	y	z	$B\left(\AA^{2}\right)$
4 Y	4(c)	0	0.368 (3)	$\frac{1}{4}$	1.5 (9)
$4 \mathrm{Cd}(1)$	4(c)	0	$0 \cdot 822$ (2)	4	$0 \cdot 8$ (5)
$8 \mathrm{Cd}(2)$	8(g)	$0 \cdot 216$ (2)	0.094 (2)	$\frac{1}{4}$	$0 \cdot 6$ (3)

$z=\frac{1}{4}$

$z=\frac{3}{4}$

Fig. 1. The two layers at $z=\frac{1}{4}$ and $z=\frac{3}{4}$ of the elementary cell of ErCd_{3}. Shaded circles: Er ; open circles: Cd.

Fig. 2. Geometrical relation between the $\mathrm{GdCd}_{3}\left(\mathrm{Ni}_{3} \mathrm{Sn}\right.$-type) and ErCd_{3} structures. Section $x y$ at $z=\frac{1}{4}$. Large circles are rare earth atoms, small circles Cd atoms. Four GdCd_{3} cells are drawn with solid lines; the dashed lines limit the ErCd_{3} cell.

Fig. 3. Atomic distribution around the rare earth and cadmium atoms in GdCd_{3} and ErCd_{3}.

Fig. 1 shows the two layers at $z=\frac{1}{4}$ and $z=\frac{3}{4}$ of the elementary cell of ErCd_{3}. In Table 4 are reported the interatomic distances for ErCd_{3} and YCd_{3}. The very close relationship between the GdCd_{3} and ErCd_{3} structures is shown in Fig. 2. The arrows indicate the shifting directions of the atoms going from the hexagonal to the orthorhombic packing. In the GdCd_{3} and ErCd_{3} structures the coordination around the rare earth and cadmium atoms is somewhat different. This can be shown by plotting, for each atom in the asym-
metric unit, the number of atoms at equal distance vs. $d / \sum r$, where d is the corresponding distance and Σr is the sum of the metallic radii of the considered atom and the surrounding one. As already noted by Bruzzone, Fornasini \& Merlo (1970), in all cases a gap in this atomic distribution occurs. The coordination numbers obtained by counting all the atoms before the gap are generally in good agreement with the values obtained following the Frank \& Kasper (1958, 1959) criterion. Fig. 3 shows the atomic distribution plot for GdCd_{3} and ErCd_{3}. In GdCd_{3} the Gd atom is surrounded by twelve Cd atoms, six at the same distance and six at a different distance. In ErCd_{3} the coordination number of the rare-earth atom increases to 14 because an Er atom is bound with 12 Cd atoms and with two Er atoms. Regarding the two crystallographic types of cadmium in ErCd_{3}, their coordination numbers are 12 and 11 , compared with the value of 12 shown by the Cd atom in GdCd_{3}.

Table 4. Interatomic distances for ErCd_{3} and YCd_{3}

ErCd_{3}		YCd_{3}	
$\mathrm{Er}-2 \mathrm{Er}$	$3 \cdot 705 \AA$	Y-2 Y	3.76 A
Er-2 Cd(1)	3.577	Y-2 Cd(1)	$3 \cdot 56$
$\mathrm{Er}-2 \mathrm{Cd}(1)$	$3 \cdot 164$	Y-2 Cd(1)	$3 \cdot 18$
Er-2 Cd(2)	$3 \cdot 283$	Y-2 Cd(2)	$3 \cdot 34$
Er-2 Cd(2)	$3 \cdot 167$	Y-2 Cd(2)	$3 \cdot 17$
$\mathrm{Er}-4 \mathrm{Cd}(2)$	3.174	$\mathrm{Y}-4 \mathrm{Cd}(2)$	$3 \cdot 17$
$\mathrm{Cd}(1)-2 \mathrm{Er}$	$3 \cdot 577$	Cd(1)-2 Y	$3 \cdot 56$
$\mathrm{Cd}(1)-2 \mathrm{Er}$	$3 \cdot 164$	Cd(1)-2 Y	$3 \cdot 18$
$\mathrm{Cd}(1)-2 \mathrm{Cd}(2)$	3.257	$\mathrm{Cd}(1)-2 \mathrm{Cd}(2)$	$3 \cdot 32$
$\mathrm{Cd}(1)-2 \mathrm{Cd}(2)$	$3 \cdot 190$	$\mathrm{Cd}(1)-2 \mathrm{Cd}(2)$	$3 \cdot 18$
$\mathrm{Cd}(1)-4 \mathrm{Cd}(2)$	$2 \cdot 964$	$\mathrm{Cd}(1)-4 \mathrm{Cd}(2)$	3.00
$\mathrm{Cd}(2)-1 \mathrm{Er}$	$3 \cdot 283$	Cd(2)-1 Y	$3 \cdot 34$
$\mathrm{Cd}(2)-1 \mathrm{Er}$	$3 \cdot 167$	$\mathrm{Cd}(2)-1 \mathrm{Y}$	$3 \cdot 17$
$\mathrm{Cd}(2)-2 \mathrm{Er}$	3.174	Cd(2)-2 Y	$3 \cdot 17$
$\mathrm{Cd}(2)-1 \mathrm{Cd}(1)$	$3 \cdot 257$	$\mathrm{Cd}(2)-1 \mathrm{Cd}(1)$	$3 \cdot 32$
$\mathrm{Cd}(2)-1 \mathrm{Cd}(1)$	$3 \cdot 190$	$\mathrm{Cd}(2)-1 \mathrm{Cd}(1)$	$3 \cdot 18$
$\mathrm{Cd}(2)-2 \mathrm{Cd}(1)$	2.964	$\mathrm{Cd}(2)-2 \mathrm{Cd}(1)$	$3 \cdot 00$
$\mathrm{Cd}(2)-1 \mathrm{Cd}(2)$	3.022	$\mathrm{Cd}(2)-1 \mathrm{Cd}(2)$	3.05
$\mathrm{Cd}(2)-2 \mathrm{Cd}(2)$	3.145	$\mathrm{Cd}(2)-2 \mathrm{Cd}(2)$	$3 \cdot 17$

The lattice constants of the orthorhombic MCd_{3} phases, subsequently calculated, are reported by Bruzzone et al. (1972), who noted that the cube root of the cell volume vs. the rare earth trivalent ionic radius shows a regularly decreasing linear trend from TbCd_{3} to LuCd_{3}. But, if the single lattice constants of these compounds are plotted vs. the same abscissa (Fig. 4), a decreasing trend is observed for the b and c constants, while the a constant shows an increasing trend. The inclination to form a shorter M-M distance between rare earth atoms is probably the reason for this abnormal behaviour. In fact, with decreasing rare-earth atomic dimensions, the lengthening of the elementary

Fig. 4. Lattice constants of the orthorhombic MCd_{3} phases (in \AA) vs. the rare earth trivalent ionic radii.
cell in the x direction makes possible a large reduction in the b constant, which is necessary for keeping the M-M distance short.

Apert from the stoichiometry, the atomic positions of ErCd_{3} are quite similar to those of NaHg .

The authors thank Professor A. Iandelli for his advice and valuable discussion.

This work was sponsored by the Italian C.N.R.

References

Bruzzone, G., Fornasini, M. L. \& Merlo, F. (1970). J. Less-Common Metals, 22, 253.
Bruzzone, G., Fornasini, M. L. \& Merlo, F. (1971). J. Less-Common Metals, 25, 295.
Bruzzone, G., Fornasini, M. L. \& Merlo, F. (1972). J. Less-Common Metals. To be published.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Frank, F. C. \& Kasper, J. S. (1958). Acta Cryst. 11, 184.
Frank, F. C. \& Kasper, J. S. (1959). Acta Cryst. 12, 483. International Tables for X-ray Crystallography (1962). Vol III. Birmingham: Kynoch Press.

