Acta Cryst. (1972). B28, 3094

Crystal Structure of ErCd₃ and Its Isomorphous Compounds

BY M. L. FORNASINI AND F. MERLO

Istituto di Chimica Fisica, Università di Genova, Genova, Italy

(Received 16 May 1972)

The crystal structure of $ErCd_3$ has been solved using photographic data. The compound is orthorhombic, a=7.094, b=10.678, c=4.804 Å, space group *Cmcm*, Z=4. The packing arrangement is closely related to that of GdCd₃, with the hexagonal Ni₃Sn structure type. All the MCd₃ compounds with M=Tb, Dy, Ho, Tm, Lu and Y are isotypic with ErCd₃.

During a study on the alloying behaviour of the rareearth metals with cadmium (Bruzzone, Fornasini & Merlo, 1972), Tb, Dy, Ho, Er, Tm, Lu and Y were found to form isomorphous MCd₃ phases. The purpose of the present work was the determination of their crystal structure.

The preparation of the compounds is described by Bruzzone *et al.* (1972). Several, single needle-shaped crystals of ErCd₃ were examined with X-rays by Laue, rotating, Weissenberg and precession methods, using Cu or Mo K α radiation. The intensity data were obtained from a well formed prismatic crystal, measuring $0.2 \times 0.02 \times 0.02$ mm. Integrated precession photographs, taken with filtered Mo radiation, provided 217 independent reflexions of which 129 observed reflexions were measured by a microdensitometer and 88 unobserved were assumed to have a value equal to half the least observable intensity. Lorentz and polarization corrections were applied, but as the crystal was approximately cylindrical and $\mu r \simeq 0.5$ for Mo radiation, no absorption correction was made.

All crystals showed orthorhombic symmetry and the lattice constants, subsequently refined from powder data, are:

a = 7.094, b = 10.678, c = 4.804 Å.

The conditions for possible reflexions are: hkl present with h+k=2n, and h0l present with l=2n, indicating the three possible space groups $Cmc2_1$, C2cm and Cmcm.

A pycnometric determination of the density gave a value $d_{exp} = 9.1$ g.cm⁻³ which agrees with the calculated value $d_{calc} = 9.21$ g.cm⁻³, based on four unit formulae per cell.

The comparison of the powder photographs of ErCd_3 with those of the hexagonal GdCd₃ phase (Ni₃Sn structure type, a = 6.621, c = 4.933 Å; Bruzzone, Fornasini & Merlo, 1971), shows a certain resemblance. The cell constants of ErCd_3 are related to Ni₃Sn-like GdCd₃ as follows: $a \simeq a_{\text{hex}}$, $b \simeq a_{\text{hex}}/3$ and $c \simeq c_{\text{hex}}$. Moreover, it was noticed that the intensities of the spots hkl were equal to those of $h_i k_i l + 2$, apart from the Lp factor and normal decline, suggesting that the atoms in the cell lie on two planes perpendicular to [001] at a distance of c/2. A trial structure in the *Cmcm*

space group, based on a simple orthorhombic distortion of the Ni₃Sn type, gave a reasonable agreement between calculated and observed intensities. A modified version of the program ORFLS (Busing, Martin & Levy, 1962), was used for the full-matrix least-squares refinement. The function minimized was $\sum w(|F_{o}| (KF_c)^2$. In this calculation, amplitudes of 129 reflexions that were actually observed were given unit weight; those of reflexions too weak to be observed were given zero weight. The atomic scattering factors were corrected for the anomalous scattering with the values given in International Tables for X-ray Crystal*lography* (1962). Eleven parameters were refined – four positional coordinates, six scale factors and an overall temperature factor. After a few cycles including all observed reflexions, an R value of 0.067 was obtained, where $R = \sum ||F_o| - |F_c|| / \sum |F_o|$. At this stage it was observed that some strong reflexions, namely 002, 004, 006, 221 and 040, showed an observed structure factor lower than the calculated one. A secondary extinction correction was then applied, using the formula $|F_{\text{correct}}| = |F_o|(1+gI_c)$ where I_c is the calculated intensity and g is a parameter to be determined empirically. Refinement proceeded assuming isotropic temperature factors for each atom as variables and gave a final Rvalue of 0.060. For all reflexions the R value becomes 0.105. After the last cycle the shifts in the coordinates were nearly one per cent of their estimated standard deviations. In Table 1 are listed crystallographic data and parameters of ErCd₃ with the corresponding standard deviations. Table 2 collects the final observed and calculated structure factors. No attempt was made to refine further by using anisotropic temperature factors as variables, nor was refinement attempted using the space groups $Cmc2_1$ and C2cm.

Table 1. Crystallographic data for ErCd₃

The estimated standard deviations from the least-squares refinements are given in parentheses in units of the last significant figure of the parameter value.

Space group: <i>Cmcm</i> (No 63) a = 7.094, b = 10.678, c = 4.804 Å $d_{exp} = 9.1 \text{ g.cm}^{-3}; d_{calc} = 9.21 \text{ g.cm}^{-3}.$								
	Position	x	у	z	$B(Å^2)$			
4 Er	4(<i>c</i>)	0	0.3679 (4)	4	0.40 (8)			
4 Cd(1)	4(c)	0	0.8249 (8)	14	0.75 (13)			
8 Cd(2)	8(g)	0.2129 (6)	0.0950 (5)	4	0.71 (10)			

Table 2. Observed and calculated structure factors of $ErCd_3$

An asterisk indicates reflexions which were too weak to be measured.

h	ъ.	1		[1]	17,1	2		1		12.5	17.1		2	1		12.1	(P_1)			1		i۳.i	12
۰	2	۰		26.0	1.6	2	6	1		229.4	225.1	6		2		156.1	138.6	3	•	4		141.4	
ō	÷.	ō		444.9	484.8	2	8	÷		44.2	63.2		ó	ż		129.2	144.9	j	3	4		52.2	53.0
ò	6	ò		16.4	58.2	ż	10	÷.		50.8	11.6	8	2	2		55.5	62.5	3	5	4		205.7	226.5
õ	â	ō		100.8	86.2	ž	12	1		56.8	74.6	ō	2	ŝ		43.3	59.4	j	1	4		61.1	53.2
	10	ò.		112.5	106.0	- i	1	1		68.2	68.1	۰	4	j		262.8	279.3	3	9			173.2	147.5
0	12	ò.		50.0	41.9	· i	- 1	1		10.0	22.9		6	3		45.5	40.4	3	11	4		67.7	77.4
۰	14	ò		45.0	51.7	ī	5	÷.		114.3	94.8	ō	8	Ĵ		275.0	266.0		٥	4		329.1	315.7
1	1	٥		19.5	27.1	Ĵ,	7	1		41.4	61.0		10	- 3		79.1	66.6	4	2	4		53.1	23.5
1	3	٥		22.4	17.9	j	9	1		280.0	256.8	0	12	ŝ		126.7	114.6	4	4	4		217.9	210.1
1	•	٥		141.1	141.9	Ĵ,	11	1		\$6.0	42.5	1	•	- 3		34.1	61.6	5	۰.	4	٠	46.8	61.5
1	7	0		171.4	158.5	i	13	- 1		214.6	241.4	•	3	ŝ		183.3	173.3	5	3	4		55.1	9.4
	9	٥		116.9	115-4	- 4	ż	1		158.6	147-9	•	÷	j		36.6	59.0	6	0	4		160.1	162.5
		٥		230.6	233.0	4		1		232.8	224.0	,	7	3		178.6	191.0	6	2	4	٠	55.6	57.7
	13	э		43.3	16.3	5	1	,		146.3	140.3	۰	9	3		125.0	129.3	7	1	4		1)5.9	147.3
2	ò	۰		105.8	112.0	5	3	1		268.4	297.0	1	11	3		93.0	71.8	8	0	4		124.5	122.2
2	2	۰		203.0	213.4	6	ż	1		258.7	253.2	1	13	j		108.6	128.6	8	2	4	٠	57.0	51.0
2	4	٥		66.1	68.1	6		1		94.6	86.7	2	2	3		430.1	442.2	٥	2	5	٠	53.1	50.1
2	۰	۰		336.1	352.2	7	•	۰,		48.1	63.1	2	4	3	٠	46.9	2.4	•	٠	,		224.5	••).)
2	8	٥	٠	42.9	60.0	8	2	1		207.0	214.0	2	6	3		195.1	187.5	۰		•	٠	47.5	37.4
2	10	0		205.3	202.6	•	۰	- 2		679.6	649.6	2		3	٠	53.7	52.9	•	e	•		200.0	19
2	12	٥		107.4	129-4	•	2	2		14.2	2.4	2	10	3	٠	57.5	11.0	0	10	•		63.7	71.4
3	۰.	۰		218.7	231.6	0	- 4	2		399.3	414.5	3	1	3		41.3	46.4	•		2	٠	42.6	49
3	,	۰		63.9	68.0	0	6	2		41.4	50.1	3	3	3	٠	44.4	14.6	۰	3	- 5		144.4	121.1
3	,	٥		299.0	335-3	0	8	- 2		86.7	80.8	3	- 5	3	٠	49.2	62.0		- 2 -	2.	•	43.1	
)	7	۰		39.7	64.1	•	10	- 2	٠	78.4	95.7	3	7	3		54.1	52.6		- 2	- 2		124.	
,	9	۰		217.0	230.1	•	12	- 2	٠	49.4	38.8	3	9	3		233.5	221.4			2			
3	••	۰		55.1	95.2	•	14	2		36.6	47.2	3		3	٠	63.1	37.6		12	- 2			
3	13	•	٠	61.9	5.9	,		- 3	٠	29.0	27.5	,	- 12			104.9	213.7			- 2			
•	•	•		433.6	470.0		,	2	•	28.5	20.0		- 2	1		128.1			1	-2	-	100	1.1
		•	•	33.1	34.0		2			133.1	127.0					193.0	103.1		•	- 2			
	•	<u> </u>		315.9	307.8		- 1	- 3		167.2	153.3	2	- 1	- ?		114.0	119.6		•	2	-		
- 2	- 1	•		106.1	99.0			- 1		120.4	105.8		3	2			240.2		- 1	2		17.6	
- 2				39.0	10.2			- 1		211.0	10.9	ŝ		- 2			210.0			÷.	Ξ.		
				233.0	210.1	- 1	ູນ			43-7	15.0		- 1	4			20.2			2	2	66.8	
. 2	- 1							- :			10.0			2					;	÷	Ξ.	\$6.7	9
	- 2			19741			- 1	- :		10/10			ž	- 2					- 2	÷.		100.1	112.6
- 4	1			197.9	193.8		- 2	- 1			1.1.7	ž			•	101.0	101.1			÷		187.6	182
				137.0			ž	:			57.4	š	- 2	- 2		48.1	15.5	í	5	÷.		170-1	167.5
š	- 5	Ň		76.0	68.7	;	. г о	;		181.6	\$7.2	ň	ň	- 2	-	44.4	69.1	, i	5			121.1	1.2.1
š	- 2			110.2	149.1	;		- 5		40.6	121.8	ă	10	- 7		75.0	71.1	ā	ā	Ġ		292.9	101.4
š	- 2	- 4		17.0	42.2		- 7	;		200.2	201.7	ě	12	- 2	-	42.1	27.6	ā	ž	6		18.0	1.0
ň	Ă	- 6	•	1.5.6	121.0		. i	- 3		62.8	61.1	- i		i	-	39.3	26.6	ō	÷	6		206.9	212.9
	10	- 6		110.6	97.2			,		310.3	296.2		- i	- à		19.8	22.5	ż	ò	6		61.4	61.0
ŏ	12	- 4		119.6	110.5	· í	ź	- 2		46.7	60.8		ŝ	- Ā		124.0	96.9	ż	ż	6		63.0	85.0
ā	14	- i		171.5	172.5	5	. 9	2	-	168.6	183.8	•	Ť	4		145.2	123.0	2	4	6		63.4	46.8
	1	- i		78.2	75.1	í	- 11	2		58.9	69.9	1	ġ	- 4		92.7	84.6	2	6	6		177.1	164.9
	- i	i		204.8	226.8	i	13	- 2		64.5	5.9	1	11	- 4		175.5	178.8	3	1	6		106.2	108.9
	÷	- i		77.3	68.2		ő	2		434.0	415.9	i	13	- ê		40.8	13.8	j	3	6	٠	69.6	44.3
- i	÷	- i		218.8	232.0		ż	- 2		42.1	30.9		ō	•		52.8	78.6	Ĵ,	\$	6		190.7	107.4
	- 9	•		168.7	149.3	4	- 4	2		278.5	217.7	2	2	- 4		154.4	126.6	4	٥	6		225.7	224.8
1	- 11	- 1		87.3	82.9	,	•	2		92.2	86.9	2	4			54.6	55.6	4		ć		165.6	159.4
1	13	1		148.5	144.3	•	્ર	- 2		36.7	13.4	2	- 6	- 4		244.8	236.6						
2	ź	•		604.3	581.4	6	, õ	2		201.9	200.9	2	8	4		58.8	51.2						
2	4	1		27.9	2.6		- 2	- 2		49-1	73.4	2	10	- 4		146.2	151.3						

The crystal-structure determination was carried out also for the isomorphous compound YCd₃. Intensity data were collected from a crystal measuring $0.13 \times$ 0.03×0.04 mm using the same procedure as for ErCd₃. A least-squares refinement was made with only 53 observed reflexions, starting with the positional parameters of ErCd₃, single isotropic *B* factors and one scale factor. An *R* value of 0.066 was obtained at the end of the last cycle. In Table 3 are shown crystallographic data for YCd₃.

Table 3.	Crystallographic	data	for	YCd
----------	------------------	------	-----	-----

Space group: Cmcm (No. 63)	
a = 7.044, b = 10.864, c = 4.837 Å	

 $d_{exp} = 7.6 \text{ g.cm}^{-3}; d_{calc} = 7.64 \text{ g.cm}^{-3}.$

	Position	x	У	z	$B(Å^2)$
4 Y	4(c)	0	0.368 (3)	1	1.5 (9)
4 Cd(1)	4(c)	0	0.822(2)	1 de la companya de l	0.8 (5)
8 Cd(2)	8(g)	0.216 (2)	0.094 (2)	4	0.6 (3)

Fig. 1. The two layers at $z=\frac{1}{4}$ and $z=\frac{3}{4}$ of the elementary cell of ErCd₃. Shaded circles: Er; open circles: Cd.

Fig. 2. Geometrical relation between the GdCd₃ (Ni₃Sn-type) and ErCd₃ structures. Section xy at $z=\frac{1}{4}$. Large circles are rare earth atoms, small circles Cd atoms. Four GdCd₃ cells are drawn with solid lines; the dashed lines limit the ErCd₃ cell.

Fig. 3. Atomic distribution around the rare earth and cadmium atoms in GdCd₃ and ErCd₃.

Fig. 1 shows the two layers at $z=\frac{1}{4}$ and $z=\frac{3}{4}$ of the elementary cell of ErCd₃. In Table 4 are reported the interatomic distances for ErCd₃ and YCd₃. The very close relationship between the GdCd₃ and ErCd₃ structures is shown in Fig. 2. The arrows indicate the shifting directions of the atoms going from the hexagonal to the orthorhombic packing. In the GdCd₃ and ErCd₃ and ErCd₃ structures the coordination around the rare earth and cadmium atoms is somewhat different. This can be shown by plotting, for each atom in the asym-

metric unit, the number of atoms at equal distance vs. $d/\sum r$, where d is the corresponding distance and Σr is the sum of the metallic radii of the considered atom and the surrounding one. As already noted by Bruzzone, Fornasini & Merlo (1970), in all cases a gap in this atomic distribution occurs. The coordination numbers obtained by counting all the atoms before the gap are generally in good agreement with the values obtained following the Frank & Kasper (1958, 1959) criterion. Fig. 3 shows the atomic distribution plot for GdCd₃ and ErCd₃. In GdCd₃ the Gd atom is surrounded by twelve Cd atoms, six at the same distance and six at a different distance. In ErCd₃ the coordination number of the rare-earth atom increases to 14 because an Er atom is bound with 12 Cd atoms and with two Er atoms. Regarding the two crystallographic types of cadmium in ErCd₃, their coordination numbers are 12 and 11, compared with the value of 12 shown by the Cd atom in $GdCd_3$.

Table 4. Interatomic distances for ErCd₃ and YCd₃

ErCd ₃		YCd ₃	
Er-2 Er	3·705 Å	Y-2 Y	3·76 Å
Er-2 Cd(1)	3.577	Y-2 Cd(1)	3.56
Er-2 Cd(1)	3.164	Y-2 Cd(1)	3.18
Er-2 Cd(2)	3.283	Y-2 Cd(2)	3.34
Er-2 Cd(2)	3.167	Y-2 Cd(2)	3.17
Er-4 Cd(2)	3.174	Y-4 Cd(2)	3.17
Cd(1)-2 Er	3.577	Cd(1)-2 Y	3.56
Cd(1)-2 Er	3.164	Cd(1)-2 Y	3.18
Cd(1)-2 Cd(2)	3.257	Cd(1)-2 Cd(2)	3.32
Cd(1)-2 Cd(2)	3.190	Cd(1)-2 Cd(2)	3.18
Cd(1)-4 Cd(2)	2 ·964	Cd(1)-4 Cd(2)	3.00
Cd(2)-1 Er	3.283	Cd(2)-1 Y	3.34
Cd(2)-1 Er	3.167	Cd(2)-1 Y	3.17
Cd(2)-2 Er	3.174	Cd(2)-2 Y	3.17
Cd(2)-1 Cd(1)	3.257	Cd(2)-1 Cd(1)	3.32
Cd(2)-1 Cd(1)	3.190	Cd(2)-1 Cd(1)	3.18
Cd(2)-2 Cd(1)	2 ·964	Cd(2)-2 Cd(1)	3.00
Cd(2)-1 Cd(2)	3.022	Cd(2)-1 Cd(2)	3.05
Cd(2) = 2 Cd(2)	3.1/15	Cd(2) - 2 Cd(2)	3.17

The lattice constants of the orthorhombic MCd₃ phases, subsequently calculated, are reported by Bruzzone *et al.* (1972), who noted that the cube root of the cell volume *vs.* the rare earth trivalent ionic radius shows a regularly decreasing linear trend from TbCd₃ to LuCd₃. But, if the single lattice constants of these compounds are plotted *vs.* the same abscissa (Fig. 4), a decreasing trend is observed for the *b* and *c* constants, while the *a* constant shows an increasing trend. The inclination to form a shorter M–M distance between rare earth atoms is probably the reason for this abnormal behaviour. In fact, with decreasing rare-earth atomic dimensions, the lengthening of the elementary

Fig. 4. Lattice constants of the orthorhombic MCd₃ phases (in Å) vs. the rare earth trivalent ionic radii.

cell in the x direction makes possible a large reduction in the b constant, which is necessary for keeping the M-M distance short.

Apert from the stoichiometry, the atomic positions of $ErCd_3$ are quite similar to those of NaHg.

The authors thank Professor A. Iandelli for his advice and valuable discussion.

This work was sponsored by the Italian C.N.R.

References

BRUZZONE, G., FORNASINI, M. L. & MERLO, F. (1970). J. Less-Common Metals, 22, 253.

- BRUZZONE, G., FORNASINI, M. L. & MERLO, F. (1971). J. Less-Common Metals, 25, 295.
- BRUZZONE, G., FORNASINI, M. L. & MERLO, F. (1972). J. Less-Common Metals. To be published.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

FRANK, F. C. & KASPER, J. S. (1958). Acta Cryst. 11, 184.

FRANK, F. C. & KASPER, J. S. (1959). Acta Cryst. 12, 483.

International Tables for X-ray Crystallography (1962). Vol III. Birmingham: Kynoch Press.